If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3=129
We move all terms to the left:
7x^2+3-(129)=0
We add all the numbers together, and all the variables
7x^2-126=0
a = 7; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·7·(-126)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{2}}{2*7}=\frac{0-42\sqrt{2}}{14} =-\frac{42\sqrt{2}}{14} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{2}}{2*7}=\frac{0+42\sqrt{2}}{14} =\frac{42\sqrt{2}}{14} =3\sqrt{2} $
| -6u+9u+5=6u+8 | | -11=8r-5r+1 | | X×7+y×7=49 | | 8^3x-1=4^-2x+3 | | 5y+3+2y+7=12y-10 | | 11/8y•y=190 | | q+22= –1 | | 4(g+3)=7g−12 | | 15=4a-2+5 | | 5y+3+2y+7=12-10 | | 2x-4/4=2x+6/9 | | 6(2+3c)=56 | | RS=7y+5 | | (2+3c)=56 | | 4p/5+9=11 | | -6u+9u×5=6u×8 | | 4x+5=3-1 | | 2p-1.3=-8p-16.7 | | (1/2)^n=1000 | | -1+15t=-4t | | 2x-2=9.6 | | 9n+-8+6n+7=180 | | 0.1x-2=8 | | 1x=11+3x | | P+9÷5=r | | -8-5d=-9d | | X-9x=14 | | x=10.5x2/3 | | 2.5x-3=15 | | -10+5x=15x-7 | | -4y-5+5y=20 | | 3x+3=4x−6 |